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Abstract

We consider the problem of providing QoS guarantees
in a high-speed packet switch. As basic requirements, the
switch should be scalable to high speeds per port, a large
number of ports and a large number of traffic flows with in-
dependent QoS guarantees. Existing scalable solutions are
based on Virtual Output Queueing, which is computation-
ally complex when required to provide QoS guarantees for
a large number of flows.

We present a novel architecture for packet switching
that provides support for such QoS guarantees. A cost-
effective fabric with small external speedup is combined
with a feedback mechanism that enables the fabric to be vir-
tually lossless, thus avoiding packet drops indiscriminate of
QoS flows. Through analysis and simulation, we show that
this architecture provides accurate QoS support, has low
computational complexity and is scalable to very high port
speeds.

1 Introduction

High speed communication between businesses has been
a large share of telecommunications market in recent years.
This communication needs to be of high quality, secure and
reliable. Traditionally, these services were provided us-
ing ATM and Frame Relay technologies, but at a premium
cost. Recent advances in traffic engineering and the ad-
vent of Voice over IP technologies provide an opportunity
to carry all enterprise traffic (voice, streaming and non-real-
time data) at a lower cost. Virtual Private Networks (VPNs)
[5] and Virtual Private LAN Services (VPLS) [14] are two
examples of such network services. A main requirement for
such services is to provide Quality of Service (QoS) guar-
antees. Interactive media such as VoIP needs low delay and
low loss, other traffic needs minimum bandwidth guarantee.

In this paper we consider the problem of providing such
guarantees in a high-speed, cost-effective switch at the in-

terface (edge) between enterprise and service provider net-
works. At a minimum, the switch is required to provide
three types of service: Premium, Assured and Best Effort
[1],[7]. Premium service provides low loss and small delay
for a flow sending within a pre-determined rate limit (any-
thing above the limit is discarded). Assured service guar-
antees delivery for traffic within a limit, but allows and for-
wards extra traffic within a higher limit if transmit opportu-
nities are available.

A provider edge switch is required to differentiate be-
tween traffic from different customers (here called flows)
and provide separate guarantees to each flow. A require-
ment is to support a large number of such flow guarantees
(100s,1000s) per port. Traffic from one customer (flow) can
enter through one or multiple ingress ports and exit through
one or multiple ports. We consider the problem of providing
1-to-1 and N-to-1 services (or “Pipe” and “Funnel scope”
as defined in [6]), as 1-to-N and N-to-N can be provided as
combinations of services of the first two kinds. In the case
of Assured N-to-1 service, it is also desirable to provide a
fair distribution of service among the N components of the
flow.

Current state-of-the-art switch architectures are based on
Virtual Output Queuing (VOQ) [2], [11], requiring a fab-
ric speedups ≥ 2 and a matching algorithm to find which
packets will be sent into the fabric at each fabric cycle.
Some of these algorithms can also support QoS guarantees.
A major problem is that the matching algorithms have high
complexityO(M2N2) (whereN is the number of ports and
M is the number of flows with independent QoS guarantees
per port), are run at each fabric cycle, and all VOQs at all
input lines in the system need to participate in a central-
ized algorithm. Recent proposals [9] decrease the time in-
terval between two runs of the matching algorithm, but with
a tradeoff in increased burstiness and additional scheduling
algorithms for mitigating unbounded delays. Moreover, the
service presented in [9] is of type Premium 1-to-1. To our
knowledge, no architecture can provide Assured N-to-1 ser-
vice.
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To provide a low-complexity switch architecture that ful-
fills the above requirements, we observe that the main cause
for high complexity in current architecture is the necessity
of addressing congestion at an output line. Short term con-
gestion can be absorbed by buffers, whereas long term con-
gestion results in packet loss. We also observe that many
measurement studies (for example [10]) have shown that
traffic in the Internet is dominated (about 90%) by the TCP
protocol. A salient feature of TCP is that packet transmis-
sion is controlled by a congestion avoidance algorithm [8],
[13]. As an effect, the average sending rate of a TCP flow
is a decreasing function of drop probability and of round
trip time (see [12] for a quantitative evaluation of this func-
tion). In practice, TCP flows have a stable (long-term) op-
eration at0..0.1 drop probability, and very rarely operate
above0.2 [12]. Heavy long-term congestion that results in
drop probability above0.2 can be produced by non-TCP
(and more general, non-congestion-controlled) traffic such
as multimedia traffic over UDP.

Our proposed architecture named “Feedback Output
Queuing” (FOQ) exploits this observation by efficiently
supporting fast fabrics with relatively slow output memory
interfaces and hence a small effective speedup. For exam-
ple, a speedup of1.25 at the fabric-to-line interface is suffi-
cient to maintain an output drop probability up to0.2 for a
traffic fully utilizing this interface. For higher level of long-
term congestion (for example drop probability above0.2),
the FOQ architecture uses a feedback mechanism for reduc-
ing traffic volume before it enters the switch fabric. Short-
term congestion is mitigated by switch buffering. This FOQ
mechanism provides support for the Assured service, 1-to-1
and N-to-1 scope.

Premium traffic, being policed at its guaranteed rate at
the ingress, and given that rate guarantees are ensured to be
within switch capacity by some admission control proce-
dure, cannot create congestion in the absence of other type
of traffic. Thus, Premium service can be provided through a
simple priority scheduling in OUT ports and fabric, bypass-
ing the FOQ mechanism.

In the following we show through analysis and simula-
tion studies that the proposed FOQ architecture can alle-
viate congestion at the output lines of an OQ switch with
slow output memory interface, and thus provide determin-
istic QoS guarantees.

2 Feedback Output Queuing architecture

We consider a switch as in Figure 1 with a fabric having
internal speedup ofN , an internal buffer capability and one
or a very small number of queues per port.1

1This fabric has a cost-effective implementation with shared memory
technology. The case of zero/small memory fabric with no/small internal
speedup is a separate problem, and we report our study elsewhere.
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Figure 1. Detailed FOQ switch architecture

Packets enter through a set ofN input ports of speedc.
As a packet is received at porti, a destination portj is de-
termined by a routing module, its QoS flowk is determined
by a classifier and an IN dropper determines if the packet is
discarded. If not discarded, the packet is transmitted to the
fabric through a line of speedsc. We assume a fabric with
internal speed ofNsc, i.e., at each fabric cycle one packet
from each IN line can be moved to an OUT line while sus-
taining speeds ofsc from all IN lines. Multiple (up toN )
packets can be received at an OUT line in one cycle, and
in that case the packets are placed in a fabric queueFQj

corresponding to the destination linej.

Packets are forwarded by the OUT linej at speedsc,
separated into OUT queues{OQj,k}k based on their QoS
flow, and scheduled for transmission to OUT portj of speed
c. The OUT scheduling implements various QoS guaran-
tees such as priority, minimum rate guarantee, maximum
rate limit, maximum delay guarantee. This OUT schedul-
ing results in a certain service rate (in general variable in
time) for each OUT queue.

If traffic to OQj,k has a rate higher than the current ser-
vice rate of flowk, packets accumulate in this queue and
some of them may be dropped by a queue management
mechanism such as Drop tail or RED (see [3] for details). If
the traffic to all queues at OUT linej amounts to an aggre-
gate rate abovesc, then packets accummulate at the fabric
queueFQj . If this situation persists,FQj fills and pack-
ets get dropped in the fabric. In this case, QoS guarantees
for some flowk may be violated since fabric drops do not
discriminate between different flows.

We define therelative congestionat a queue:C =
1 − rO/rI whererI and rO are traffic rates input to and
output from the queue respectively. It is easy to see that, as
long as the traffic coming out of OUT linej is such that the
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relative congestionCj,k at each queue{OQj,k}k is below a
thresholddmax < 1 − 1/s, and the OUT portj is utilized
at its full capacityc, then the traffic throughput at the inter-
face of fabric to OUT linej is belowsc, and thus there is
no congestion at that interface and no fabric drop.

In the FOQ architecture, a feedback mechanism controls
the relative congestion at each OUT queue to be below a
certain threshold in the following way. The relative conges-
tion at each OUT queue is measured over an intervalT

RelCong(T ) = 1−OutPkts(T )/InPkts(T )

A control algorithm computes a drop indication based on
the last sample of relative congestion and an internal state,
and transmits it to all IN modules. There, packets of the in-
dicated flow are randomly dropped with a probability that is
a function of the drop indication. By keeping the traffic be-
low a congestion threshold, the fabric congestion and drop
are avoided. Thus, packets are dropped only from those
flows that create congestion, and the QoS guarantees are
provided to all flows as configured.

An implementation issue is the data rate of feedback
transmission. ConsideringM flows at each of theN OUT
ports and that the drop information is coded inF bits, the
total feedback data rate isMNF/T . For example, for
M = 1000, N = 32, F = 8, T = 1ms, the feedback
data rate for the entire switch is256Mb/s. It is possible
to reduce this rate by reducing the precision of the feed-
back data, and thus its encoding. In an extreme case, the
feedback has three values: increase, decrease or keep same
drop level. All IN modules use this indication in conjunc-
tion with a pre-defined table of drop levels. We call this
the “Gear-Box algorithm” (GB), model it in Section 3 and
show its performance in Section 4. This data rate can further
be reduced substantially if increase/decrease indications are
only sent when needed.

Using similar arguments, we find the computational
complexity of FOQ to beO(NM) for the entire switch
and run at every FOQ cycle (typically1ms). Note that
this is much lower complexity than VOQ with matching,
O(M2N2), which is run at every fabric cell cycle (typically
100ns).

3. A control theoretical model for the Gear-Box
algorithm

In this section we develop an analytical model for the FOQ
architecture by a control theoretical approach. In our anal-
ysis, we start with a classical discrete-time Proportional-
Integral (PI) controller [4] to adjust the drop rate of each
flow. We then show that an efficient algorithm can be ob-
tained by quantizing the control decisions of the PI con-
troller, which we call the Gear Box algorithm. Here we

present the analysis for only a single flow, and omit some
details due to space limitations.

The basic control structure for a particular flowk at an
OUT port j is shown in Figure 2. All variables we use
in this section are for the aggregate traffic in flowk orig-
inating from all IN ports and destined to OUT portj, un-
less we note otherwise (i.e., we omit the subscript(j, k) for
notational convenience).λ(t) is the arrival rate (bits/s) of
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Figure 2. FOQ architecture.

flow (j, k) (i.e., traffic from all inputs destined for the OUT
queueOQj,k). A portion of the arriving traffic is dropped
at the IN droppers (we denote byρ(t) (bits/s) the aggregate
rate of such dropped traffic), and the surviving portion goes
into the fabric queueFQj at a rateu(t) = λ(t)−ρ(t). This
traffic shares the fabric queue with other traffic destined to
OUT line j, and then it is delivered to OUT dropper(j, k)
at a rater(t). In the following model we assume that the
fabric queue does not overflow due to the FOQ mechanism.

The aggregate drop rateρ(t), is adjusted by a PI con-
troller. The purpose of the controller is to keep the fabric
output rate for packets destined toOQj,k at a desired level,
ropt(t) = αsrO(j,k)(t), whereα, a constant smaller than
but close to1, is a safety margin andrO(j,k)(t) is the ser-
vice rate for flow(j, k). The two nonlinearities in the figure
simply state that the drop rate can not be negative or greater
than the arrival rateλ(t). In our analysis we assume that the
controller is operating in the linear region, and ignore the
nonlinearities.

The delayT between the output of the controller and the
arrival rate models a zero-order hold at the controller output.
The controller operates on time-average of the error signal
taken over an intervalT , rather than the signal itself, and
modifies its output only at intervals ofT . In the rest of this
section we denote the time-averages by a discrete notation,

e.g.,r[n] = 1
T

∫ (n+1)T

nT
r(t)dt for n = 0, 1, ... Assuming

the amount of traffic in the fabric queue destined toOQj,k

does not change significantly duringT at steady state, the
closed-loop system is governed by the following equations
at t = nT epochs:

r[n] ≈ λ[n]− ρ[n− 1], (1)
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ρ[n] = Ke[n] + KI

n∑
m=0

e[m]. (2)

wheree[n] = r[n]− ropt[n].
We can now investigate the step response of the system

for the case of a single flow. In this case,rO = c andropt =
αsc are constant. The magnitude of the arrival rate can in
general be larger than the maximum fabric output rate, i.e.,
λ[n] = λ0 > sc. In this case the fabric output is constant,
r[n] = sc, for an initial period0 ≤ n ≤ N0−1. During this
period the controller output increases linearly, and the fabric
queue size increases until the drop rate reachesρ = λ0− sc
and then decreases back to zero. The fabric queue size can
be computed from (1) and (2),

q[n] = T [(n + 1)(λ0 − sc)− nK(sc− ropt)

−n(n + 1)
2

KI(sc− ropt)] (3)

andN0 can be derived fromq[N0] = 0. The behavior of the
system forn ≥ N0 can be found by az-transform analysis.
The system characteristic equation is given by

z2 + (K + KI − 1)z −K = 0, (4)

therefore the system is stable for

0 < KI < 2(1−K). (5)

Using a straightforward partial fraction method, and com-
bining this result with the previous case gives

ρ[n] =
{

[K + (n + 1)KI ](sc− ropt), n < N0

(1−A1z
n−N0
1 + A2z

n−N0
2 )(λ0 − ropt), n ≥ N0

(6)
where

Aj =
z2
j −

KI(N0+1)(sc−ropt)
λ0−ropt

zj

z1 − z2
(7)

for j = 1, 2, andz1 andz2 are the roots of (4).
This drop rate can be divided fairly among theN IN

droppers by introducing a packet drop probability

p[n] =
ρ[n]

λ̂[n + 1]
=

(1− p[n− 1])ρ[n]
r[n]

(8)

where we used the fabric output rate divided by the admit
probability (i.e. 1 − p[n − 1]) as an estimate of the next
average arrival rate. If we define

δ[n] =
(K + KI)e[n]−Ke[n− 1]

r[n]
(9)

then the drop probability is recursively given by

p[n] = (1− δ[n])p[n− 1] + δ[n]. (10)

(9) and (10) are (approximately) equivalent to the PI con-
troller without the need for an actual integrator. The ingress
drops require sendingp[n] to all IN ports as the feedback.
Since this may require too much bandwidth in a practical
switch implementation, we further simplify the feedback
mechanism by settingK = 0 and using only finite num-
ber of values forp[n]. Quantizingδ[n] in (9) to three levels
and expressing the result in terms of the relative congestion
C[n] = 1− rO[n]/r[n] yields

δq[n] =


β C[n] > dmax

β
β−1 C[n] < dmin

0 otherwise
(11)

We call this quantized mechanism theGear Box (GB)con-
troller, since there are only three possible actions: increase
the drop probability, decrease the drop probability, and no
change. The two constants,dmax anddmin, determine when
the increase and decrease should take place, respectively.
With the GB controller it is sufficient to have a 2-bit feed-
back signal everyT seconds. Furthermore, by using (11)
in (10), it can be seen that the different levels of the admit
probabilities are the different powers of(1− β). Therefore
the calculation at the IN droppers can be implemented by
storing

Pk = 1− (1− β)k (12)

as a table in the memory and just updating a pointer to this
table based on the feedback signal. We also set

β =
√

1− dmax

1− dmin
.

With this selection the relative congestion after a step in-
crease or decrease are equal, thus providing hysteresis to
the GB control for stability against small perturbations.

4 Simulation experiments

We simulate a 16x10Gb/s-port switch with a5MB
shared memory fabric having external speedups = 1.28,
2MB drop-tail OUT queues per flow, and no ingress
queues. The FOQ-GB mechanism has a sampling rateT =
1ms and feedback thresholdsdmax = 0.17, dmin = 0.02.
We run each simulation for200ms.

The offered load is composed of three flows sending at
constant rates starting att = 0: flow 0: 0.952Gb/s, flow
1 and 2: 9.52Gb/s each, all ingressing on separate ports
and exiting the same port. Given that the total offered
load is20Gb/s, the OUT port has a potential200% over-
load. The required guarantee for flow 0 is Premium service
(0.952Gb/s rate guarantee), and minimum rate guarantees
of 7.75Gb/s and1.3Gb/s are required for flows 1 and 2
respectively. Flow 0 is assigned to Fabric queue 0 at high
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Figure 3. Throughput without FOQ Figure 4. Throughput with FOQ

Figure 5. Drop rate without FOQ Figure 6. Drop rate with FOQ

Figure 7. Delay without FOQ Figure 8. Delay with FOQ
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priority, and flows 2 and 3 to Fabric queue 1 at lower pri-
ority. At the OUT scheduler, each flow is assigned a sepa-
rate queue. Queue 0 is scheduled at high priority, whereas
queues 2 and 3 are scheduled at lower priority in a Weigted
Fair Queueing discipline between them with6 : 1 weights,
corresponding to the required rate guarantees.

In Figures 3 and 4 we plot the evolution in time of the
service rate for the three flows, without and with FOQ re-
spectively. In Figures 5 and 6 we show the dynamics of
drop rate for the same scenarios. Flow 0 is serviced at its
arrival rate in both cases, due to its high priority assignment
in the fabric and OUT scheduler. But the rate received by
flow 1 in the non-FOQ case,5.93Gb/s (Figure 3), is below
its requirement. This is due to the drop in the fabric queue
1 (Figure 5) without discrimination between flows 1 and
2. When using FOQ (Figure 4), flow 1 receives7.62Gb/s
and flow 21.37Gb/s, thus both achieving their minimum
rate guarantees. This is explained by the FOQ action re-
flected in Figure 6 where we see an increase of input drop
for flows 1 and 2 as a reaction to output congestion. As a
consequence, the fabric drop is zero almost all the time in
the FOQ case, in contrast with the high drop rate in the base
case. The spike in fabric drop is due to the transient state
where ingress drop is increasing but not yet sufficient for
eliminating fabric congestion. With FOQ, fabric drop oc-
curs only at bursts with high rate and long duration. It can
be mitigated by larger fabric memory or higher frequency of
feedback. Also note that flow 0 is not affected even during
the FOQ transient due to its assignment to the high priority
fabric queue.

In Figures 7 and 8 we show the dynamics of packet tran-
sit delay through the whole switch. While flow 0 receives
minimum delay in both cases due to its high priority assign-
ment, flows 1 and 2 experience delays that are proportional
to their respective service rates (their OUT queues are close
to full in the steady state due to the drop-tail queue manage-
ment).

5 Conclusion

In this paper we presented the Feedback Output Queu-
ing architecture for packet switching that provides support
for QoS guarantees. As a key feature, feedback control is
applied to a fabric with small external speedup. This con-
trol enables the fabric to be virtually loss-less, thus avoiding
packet drops indiscriminate of QoS class.

We apply discrete feedback control theory to derive a
stable configuration. Through analysis and simulations we
show that a quantized version of a PI controller named
“Gear-Box control” is stable, responds quickly to traffic
bursts and provides accurate QoS guaratees. We also show
that FOQ’s computational complexity is much lower than
VOQ with matching.

We believe that this work has sparked many venues for
future research. There is a range of control algorithms to
be investigated besides those presented here. The inter-
action between the TCP congestion control algorithm and
FOQ (and RED queue management) is an interesing con-
trol problem. The FOQ architecture can be extended with a
set of input queues in order to provide zero loss for a wider
range of bursty traffic, given a limited fabric memory size.
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